
Professional Comparison: npm vs Yarn for Angular
Development .

Author: Mahmoud Alfaiyumi

Date: 29/1/2025

Table of Contents
Introduction ... 1

Overview of npm .. 1

Overview of Yarn .. 2

Feature Comparison: npm vs Yarn .. 2

Which is Better for Angular? ... 3

When to Use npm or Yarn ... 3

When to Use npm ... 3

When to Use Yarn ... 4

Installation Guides ... 4

npm ... 4

Yarn ... 4

Usage in Angular Projects ... 5

Creating a New Angular Project ... 5

Common Commands ... 5

Conclusion .. 5

1

Introduction

Package managers like npm (Node Package Manager) and Yarn are essential tools for modern
JavaScript development. They streamline dependency management, ensuring projects remain
consistent and efficient. This article compares npm and Yarn, focusing on their suitability for Angular
projects, and provides installation guides, usage examples, and actionable recommendations.

Overview of npm

- Developed By: npm, Inc. (now part of GitHub/Microsoft).

- Release Year: 2010.

- Key Features:

 - Largest registry of JavaScript packages.

 - Built into Node.js installations.

 - Supports package-lock.json for deterministic installs.

 - Integrated with npx for executing packages.

Detailed Overview:

npm (Node Package Manager) is the default package manager for Node.js and has been a cornerstone
of the JavaScript ecosystem since its inception. It provides access to the largest registry of open-
source libraries and tools, making it a go-to choice for developers. npm uses a package.json file to
manage project dependencies and scripts, and it introduced the package-lock.json file to ensure
consistent installs across environments. While npm has historically been slower due to its sequential
installation process, recent updates have improved its performance significantly. Its tight integration
with Node.js and widespread adoption make it a reliable choice for many developers.

2

Overview of Yarn

- Developed By: Facebook (now maintained by OpenJS Foundation).

- Release Year: 2016.

- Key Features:

 - Faster installations via parallel downloads.

 - Deterministic dependency resolution with yarn.lock.

 - Workspaces for monorepo support.

 - Enhanced security with integrity checks.

Detailed Overview:

Yarn was developed by Facebook in collaboration with Google, Exponent, and Tilde to address some
of npm's limitations, particularly in performance and consistency. Yarn introduced a faster
installation process by leveraging parallel downloads and a global cache. It also introduced the
yarn.lock file, which ensures deterministic dependency resolution, meaning every install produces
the exact same file structure. Yarn's workspaces feature makes it a strong contender for monorepo
projects, allowing developers to manage multiple packages within a single repository. Additionally,
Yarn emphasizes security with checksum verification and offers advanced features like Plug’n’Play
(PnP) and zero-install, which further optimize the development workflow. Yarn's modern approach
and corporate backing have made it a popular alternative to npm.

Feature Comparison: npm vs Yarn

Criteria NPM Yarn
Performance Slower (sequential installs) Faster (parallel installs)
Lockfile package-lock.json yarn.lock
Security Basic audit tools Checksum verification
CLI Usability Verbose output Clean, concise output
Offline Cache Manual configuration Built-in zero-install feature
Monorepo Support Limited Native workspaces
Community Larger ecosystem Growing, corporate-backed

3

Which is Better for Angular?

Angular CLI defaults to npm, but Yarn is equally compatible. Below is a framework-specific
comparison:

Factor NPM Yarn
CLI Integration Default (ng new) Use --package-manager=yarn
Install Speed Moderate Faster (caching advantage)
Dependency Consistency Relies on package-lock.json Strict yarn.lock enforcement
Team Collaboration Suitable Ideal for large teams

Recommendation:

- Use Yarn for large-scale Angular projects requiring speed and strict dependency control.

- Use npm for simplicity or if already integrated into your workflow.

When to Use npm or Yarn

Choosing between npm and Yarn depends on your project requirements, team preferences, and
development workflow. Below are scenarios to help you decide:

When to Use npm

1. Small Projects: For smaller projects or prototypes, npm’s simplicity and default integration with
Node.js make it a convenient choice.

2. Familiarity: If your team is already comfortable with npm, sticking with it can reduce the learning
curve.

3. Ecosystem Integration: npm is deeply integrated with the Node.js ecosystem, making it ideal for
projects relying heavily on Node.js tools.

4. Quick Setup: Since npm comes pre-installed with Node.js, it requires no additional setup.

4

When to Use Yarn

1. Large Projects: Yarn’s speed and efficient dependency resolution make it ideal for large-scale
projects with numerous dependencies.

2. Monorepos: If you’re working with monorepos, Yarn’s native workspaces provide better support
compared to npm.

3. Team Collaboration: Yarn’s deterministic installs and strict lockfile enforcement ensure
consistency across team members.

4. Performance-Critical Applications: Yarn’s parallel downloads and caching mechanisms
significantly reduce installation times.

5. Advanced Features: If you need features like Plug’n’Play (PnP) or zero-install, Yarn is the better
choice.

Installation Guides

npm

1. Install Node.js (includes npm):

 - Windows/macOS: Download from nodejs.org.

 - Linux:

 sudo apt-get update
 sudo apt-get install nodejs npm

2. Verify Installation:

 node -v
 npm -v

Yarn

1. Install via npm:

 npm install -g yarn

2. Verify Installation:

 yarn --version

https://nodejs.org/

5

Usage in Angular Projects

Creating a New Angular Project

- With npm:

 ng new my-angular-app

- With Yarn:

 ng new my-angular-app --package-manager=yarn

Common Commands

Action NPM Yarn
Install Dependencies npm install yarn install
Add a Package npm install <package> yarn add <package>
Remove a Package npm uninstall <package> yarn remove <package>
Run Scripts npm run <script> yarn run <script>

Conclusion

Both npm and Yarn excel in managing dependencies, but Yarn edges ahead for Angular projects due
to its speed, reliability, and advanced features. However, npm remains a solid choice for developers
prioritizing ecosystem familiarity. Evaluate your project’s scale and team needs to make an informed
decision.

